In this section, we will discuss the string operations with our basic Series/Index. In the subsequent we will learn how to apply these string functions on the DataFrame.
Pandas provides a set of string functions which make it easy to operate on string data. Most importantly, these functions ignore (or exclude) missing/NaN values.
Almost, all of these methods work with Python string functions (refer: https://docs.python.org/3/library/stdtypes.html#string-methods). So, convert the Series Object to String Object and then perform the operation.
Let us now see how each operation performs.
Sr.No | Function & Description |
---|---|
1 | lower()Converts strings in the Series/Index to lower case. |
2 | upper()Converts strings in the Series/Index to upper case. |
3 | len()Computes String length(). |
4 | strip()Helps strip whitespace(including newline) from each string in the Series/index from both the sides. |
5 | split(‘ ‘)Splits each string with the given pattern. |
6 | cat(sep=’ ‘)Concatenates the series/index elements with given separator. |
7 | get_dummies()Returns the DataFrame with One-Hot Encoded values. |
8 | contains(pattern)Returns a Boolean value True for each element if the substring contains in the element, else False. |
9 | replace(a,b)Replaces the value a with the value b. |
10 | repeat(value)Repeats each element with specified number of times. |
11 | count(pattern)Returns count of appearance of pattern in each element. |
12 | startswith(pattern)Returns true if the element in the Series/Index starts with the pattern. |
13 | endswith(pattern)Returns true if the element in the Series/Index ends with the pattern. |
14 | find(pattern)Returns the first position of the first occurrence of the pattern. |
15 | findall(pattern)Returns a list of all occurrence of the pattern. |
16 | swapcaseSwaps the case lower/upper. |
17 | islower()Checks whether all characters in each string in the Series/Index in lower case or not. Returns Boolean |
18 | isupper()Checks whether all characters in each string in the Series/Index in upper case or not. Returns Boolean. |
19 | isnumeric()Checks whether all characters in each string in the Series/Index are numeric. Returns Boolean. |
Let us now create a Series and see how all the above functions work.
import pandas as pd import numpy as np s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith']) print s
Its output is as follows −
0 Tom 1 William Rick 2 John 3 Alber@t 4 NaN 5 1234 6 Steve Smith dtype: object
lower()
import pandas as pd import numpy as np s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith']) print s.str.lower()
Its output is as follows −
0 tom 1 william rick 2 john 3 alber@t 4 NaN 5 1234 6 steve smith dtype: object
upper()
import pandas as pd import numpy as np s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith']) print s.str.upper()
Its output is as follows −
0 TOM 1 WILLIAM RICK 2 JOHN 3 ALBER@T 4 NaN 5 1234 6 STEVE SMITH dtype: object
len()
import pandas as pd import numpy as np s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith']) print s.str.len()
Its output is as follows −
0 3.0 1 12.0 2 4.0 3 7.0 4 NaN 5 4.0 6 10.0 dtype: float64
strip()
import pandas as pd import numpy as np s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s print ("After Stripping:") print s.str.strip()
Its output is as follows −
0 Tom 1 William Rick 2 John 3 Alber@t dtype: object After Stripping: 0 Tom 1 William Rick 2 John 3 Alber@t dtype: object
split(pattern)
import pandas as pd import numpy as np s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s print ("Split Pattern:") print s.str.split(' ')
Its output is as follows −
0 Tom 1 William Rick 2 John 3 Alber@t dtype: object Split Pattern: 0 [Tom, , , , , , , , , , ] 1 [, , , , , William, Rick] 2 [John] 3 [Alber@t] dtype: object
cat(sep=pattern)
import pandas as pd import numpy as np s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s.str.cat(sep='_')
Its output is as follows −
Tom _ William Rick_John_Alber@t
get_dummies()
import pandas as pd import numpy as np s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s.str.get_dummies()
Its output is as follows −
William Rick Alber@t John Tom 0 0 0 0 1 1 1 0 0 0 2 0 0 1 0 3 0 1 0 0
contains ()
import pandas as pd s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s.str.contains(' ')
Its output is as follows −
0 True 1 True 2 False 3 False dtype: bool
replace(a,b)
import pandas as pd s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s print ("After replacing @ with $:") print s.str.replace('@','$')
Its output is as follows −
0 Tom 1 William Rick 2 John 3 Alber@t dtype: object After replacing @ with $: 0 Tom 1 William Rick 2 John 3 Alber$t dtype: object
repeat(value)
import pandas as pd s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s.str.repeat(2)
Its output is as follows −
0 Tom Tom 1 William Rick William Rick 2 JohnJohn 3 Alber@tAlber@t dtype: object
count(pattern)
import pandas as pd s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print ("The number of 'm's in each string:") print s.str.count('m')
Its output is as follows −
The number of 'm's in each string: 0 1 1 1 2 0 3 0
startswith(pattern)
import pandas as pd s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print ("Strings that start with 'T':") print s.str. startswith ('T')
Its output is as follows −
0 True 1 False 2 False 3 False dtype: bool
endswith(pattern)
import pandas as pd s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print ("Strings that end with 't':") print s.str.endswith('t')
Its output is as follows −
Strings that end with 't': 0 False 1 False 2 False 3 True dtype: bool
find(pattern)
import pandas as pd s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s.str.find('e')
Its output is as follows −
0 -1 1 -1 2 -1 3 3 dtype: int64
“-1” indicates that there no such pattern available in the element.
findall(pattern)
import pandas as pd s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t']) print s.str.findall('e')
Its output is as follows −
0 [] 1 [] 2 [] 3 [e] dtype: object
Null list([ ]) indicates that there is no such pattern available in the element.
swapcase()
import pandas as pd s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t']) print s.str.swapcase()
Its output is as follows −
0 tOM 1 wILLIAM rICK 2 jOHN 3 aLBER@T dtype: object
islower()
import pandas as pd s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t']) print s.str.islower()
Its output is as follows −
0 False 1 False 2 False 3 False dtype: bool
isupper()
import pandas as pd s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t']) print s.str.isupper()
Its output is as follows −
0 False 1 False 2 False 3 False dtype: bool
isnumeric()
import pandas as pd s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t']) print s.str.isnumeric()
Its output is as follows −
0 False 1 False 2 False 3 False dtype: bool