In this chapter, we will learn about importing data for datasets and how to get data to work with Pybrain datasets.
The most commonly used are datasets are −
- Using sklearn
- From CSV file
Using sklearn
Using sklearn
Here is the link that has details of datasets from sklearn:https://scikit-learn.org/stable/datasets/index.html
Here are a few examples of how to use datasets from sklearn −
Example 1: load_digits()
from sklearn import datasets from pybrain.datasets import ClassificationDataSet digits = datasets.load_digits() X, y = digits.data, digits.target ds = ClassificationDataSet(64, 1, nb_classes=10) for i in range(len(X)): ds.addSample(ravel(X[i]), y[i])
Example 2: load_iris()
from sklearn import datasets from pybrain.datasets import ClassificationDataSet digits = datasets.load_iris() X, y = digits.data, digits.target ds = ClassificationDataSet(4, 1, nb_classes=3) for i in range(len(X)): ds.addSample(X[i], y[i])
From CSV file
We can also use data from csv file as follows −
Here is sample data for xor truth table: datasettest.csv
Here is the working example to read the data from .csv file for dataset.
Example
from pybrain.tools.shortcuts import buildNetwork from pybrain.structure import TanhLayer from pybrain.datasets import SupervisedDataSet from pybrain.supervised.trainers import BackpropTrainer import pandas as pd print('Read data...') df = pd.read_csv('data/datasettest.csv',header=0).head(1000) data = df.values train_output = data[:,0] train_data = data[:,1:] print(train_output) print(train_data) # Create a network with two inputs, three hidden, and one output nn = buildNetwork(2, 3, 1, bias=True, hiddenclass=TanhLayer) # Create a dataset that matches network input and output sizes: _gate = SupervisedDataSet(2, 1) # Create a dataset to be used for testing. nortrain = SupervisedDataSet(2, 1) # Add input and target values to dataset # Values for NOR truth table for i in range(0, len(train_output)) : _gate.addSample(train_data[i], train_output[i]) #Training the network with dataset norgate. trainer = BackpropTrainer(nn, _gate) # will run the loop 1000 times to train it. for epoch in range(1000): trainer.train() trainer.testOnData(dataset=_gate, verbose = True)
Panda is used to read data from csv file as shown in the example.
Output
C:\pybrain\pybrain\src>python testcsv.py Read data... [0 1 1 0] [ [0 0] [0 1] [1 0] [1 1] ] Testing on data: ('out: ', '[0.004 ]') ('correct:', '[0 ]') error: 0.00000795 ('out: ', '[0.997 ]') ('correct:', '[1 ]') error: 0.00000380 ('out: ', '[0.996 ]') ('correct:', '[1 ]') error: 0.00000826 ('out: ', '[0.004 ]') ('correct:', '[0 ]') error: 0.00000829 ('All errors:', [7.94733477723902e-06, 3.798267582566822e-06, 8.260969076585322e -06, 8.286246525558165e-06]) ('Average error:', 7.073204490487332e-06) ('Max error:', 8.286246525558165e-06, 'Median error:', 8.260969076585322e-06)
Next Topic : Click Here
Pingback: PyBrain - Datasets Types | Adglob Infosystem Pvt Ltd