Here we will discuss about kafka real time application(twitter). Let us analyze a real time application to get the latest twitter feeds and its hashtags. Earlier, we have seen integration of Storm and Spark with Kafka. In both the scenarios, we created a Kafka Producer (using cli) to send message to the Kafka ecosystem. Then, the storm and spark inte-gration reads the messages by using the Kafka consumer and injects it into storm and spark ecosystem respectively. So, practically we need to create a Kafka Producer, which should −
- Read the twitter feeds using “Twitter Streaming API”,
- Process the feeds,
- Extract the HashTags and
- Send it to Kafka.
Once the HashTags
are received by Kafka, the Storm / Spark integration receive the infor-mation and send it to Storm / Spark ecosystem.
Twitter Streaming API
The “Twitter Streaming API” can be accessed in any programming language. The “twitter4j” is an open source, unofficial Java library, which provides a Java based module to easily access the “Twitter Streaming API”. The “twitter4j” provides a listener based framework to access the tweets. To access the “Twitter Streaming API”, we need to sign in for Twitter developer account and should get the following OAuth authentication details.
- Customerkey
- CustomerSecret
- AccessToken
- AccessTookenSecret
Once the developer account is created, download the “twitter4j” jar files and place it in the java class path.
The Complete Twitter Kafka producer coding (KafkaTwitterProducer.java) is listed below −
import java.util.Arrays; import java.util.Properties; import java.util.concurrent.LinkedBlockingQueue; import twitter4j.*; import twitter4j.conf.*; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; public class KafkaTwitterProducer { public static void main(String[] args) throws Exception { LinkedBlockingQueue<Status> queue = new LinkedBlockingQueue<Sta-tus>(1000); if(args.length < 5){ System.out.println( "Usage: KafkaTwitterProducer <twitter-consumer-key> <twitter-consumer-secret> <twitter-access-token> <twitter-access-token-secret> <topic-name> <twitter-search-keywords>"); return; } String consumerKey = args[0].toString(); String consumerSecret = args[1].toString(); String accessToken = args[2].toString(); String accessTokenSecret = args[3].toString(); String topicName = args[4].toString(); String[] arguments = args.clone(); String[] keyWords = Arrays.copyOfRange(arguments, 5, arguments.length); ConfigurationBuilder cb = new ConfigurationBuilder(); cb.setDebugEnabled(true) .setOAuthConsumerKey(consumerKey) .setOAuthConsumerSecret(consumerSecret) .setOAuthAccessToken(accessToken) .setOAuthAccessTokenSecret(accessTokenSecret); TwitterStream twitterStream = new TwitterStreamFactory(cb.build()).get-Instance(); StatusListener listener = new StatusListener() { @Override public void onStatus(Status status) { queue.offer(status); // System.out.println("@" + status.getUser().getScreenName() + " - " + status.getText()); // System.out.println("@" + status.getUser().getScreen-Name()); /*for(URLEntity urle : status.getURLEntities()) { System.out.println(urle.getDisplayURL()); }*/ /*for(HashtagEntity hashtage : status.getHashtagEntities()) { System.out.println(hashtage.getText()); }*/ } @Override public void onDeletionNotice(StatusDeletionNotice statusDeletion-Notice) { // System.out.println("Got a status deletion notice id:" + statusDeletionNotice.getStatusId()); } @Override public void onTrackLimitationNotice(int numberOfLimitedStatuses) { // System.out.println("Got track limitation notice:" + num-berOfLimitedStatuses); } @Override public void onScrubGeo(long userId, long upToStatusId) { // System.out.println("Got scrub_geo event userId:" + userId + "upToStatusId:" + upToStatusId); } @Override public void onStallWarning(StallWarning warning) { // System.out.println("Got stall warning:" + warning); } @Override public void onException(Exception ex) { ex.printStackTrace(); } }; twitterStream.addListener(listener); FilterQuery query = new FilterQuery().track(keyWords); twitterStream.filter(query); Thread.sleep(5000); //Add Kafka producer config settings Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("batch.size", 16384); props.put("linger.ms", 1); props.put("buffer.memory", 33554432); props.put("key.serializer", "org.apache.kafka.common.serializa-tion.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serializa-tion.StringSerializer"); Producer<String, String> producer = new KafkaProducer<String, String>(props); int i = 0; int j = 0; while(i < 10) { Status ret = queue.poll(); if (ret == null) { Thread.sleep(100); i++; }else { for(HashtagEntity hashtage : ret.getHashtagEntities()) { System.out.println("Hashtag: " + hashtage.getText()); producer.send(new ProducerRecord<String, String>( top-icName, Integer.toString(j++), hashtage.getText())); } } } producer.close(); Thread.sleep(5000); twitterStream.shutdown(); } }
Compilation
Compile the application using the following command −
javac -cp “/path/to/kafka/libs/*”:”/path/to/twitter4j/lib/*”:. KafkaTwitterProducer.java
Execution
Open two consoles. Run the above compiled application as shown below in one console.
java -cp “/path/to/kafka/libs/*”:”/path/to/twitter4j/lib/*”: . KafkaTwitterProducer <twitter-consumer-key> <twitter-consumer-secret> <twitter-access-token> <twitter-ac-cess-token-secret> my-first-topic food
Run any one of the Spark / Storm application explained in the previous chapter in another win-dow. The main point to note is that the topic used should be same in both cases. Here, we have used “my-first-topic” as the topic name.
Output
The output of this application will depend on the keywords and the current feed of the twitter. A sample output is specified below (storm integration).
. . . food : 1 foodie : 2 burger : 1 . . .
Next Topic : Click Here
Pingback: Apache Kafka - Integration With Spark | Adglob Infosystem Pvt Ltd