In F# Lists, a list is an ordered, immutable series of elements of the same type. It is to some extent equivalent to a linked list data structure.
The F# module,Β Microsoft.FSharp.Collections.The listΒ has the common operations on lists. However F# imports this module automatically and makes it accessible to every F# application.
Creating and Initializing a F# Lists
Following are the various ways of creating lists β
- Using list literals.
- Using cons (::) operator.
- Using the List.init method of List module.
- Using some syntactic constructs called List Comprehensions.
List Literals
In this method, you just specify a semicolon-delimited sequence of values in square brackets. For example β
let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
The cons (::) Operator
With this method, you can add some values by prepending orΒ cons-ingΒ it to an existing list using the:: operator. For example β
let list2 = 1::2::3::4::5::6::7::8::9::10::[];;
[] denotes an empty list.
List init Method
The List. init method of the List module is often used for creating lists. This method has the type β
val init : int -> (int -> 'T) -> 'T list
The first argument is the desired length of the new list, and the second argument is an initializer function, which generates items in the list.
For example,
let list5 = List.init 5 (fun index -> (index, index * index, index * index * index))
Here, the index function generates the list.
List Comprehensions
List comprehensions are special syntactic constructs used for generating lists.
F# list comprehension syntax comes in two forms β ranges and generators.
Ranges have the constructs β [start .. end] and [start .. step .. end]
For example,
let list3 = [1 .. 10]
Generators have the construct β [for x in the collection do … yield expr]
For example,
let list6 = [ for a in 1 .. 10 do yield (a * a) ]
As the yield keyword pushes a single value into a list, the keyword, yield!, pushes a collection of values into the list.
The following function demonstrates the above methods β
Example
(* using list literals *) let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] printfn "The list: %A" list1 (*using cons operator *) let list2 = 1 :: 2 :: 3 :: [] printfn "The list: %A" list2 (* using range constructs*) let list3 = [1 .. 10] printfn "The list: %A" list3 (* using range constructs *) let list4 = ['a' .. 'm'] printfn "The list: %A" list4 (* using init method *) let list5 = List.init 5 (fun index -> (index, index * index, index * index * index)) printfn "The list: %A" list5 (* using yield operator *) let list6 = [ for a in 1 .. 10 do yield (a * a) ] printfn "The list: %A" list6 (* using yield operator *) let list7 = [ for a in 1 .. 100 do if a % 3 = 0 && a % 5 = 0 then yield a] printfn "The list: %A" list7 (* using yield! operator *) let list8 = [for a in 1 .. 3 do yield! [ a .. a + 3 ] ] printfn "The list: %A" list8
When you compile and execute the program, it yields the following output β
The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] The list: [1; 2; 3] The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] The list: ['a'; 'b'; 'c'; 'd'; 'e'; 'f'; 'g'; 'h'; 'i'; 'j'; 'k'; 'l'; 'm'] The list: [(0, 0, 0); (1, 1, 1); (2, 4, 8); (3, 9, 27); (4, 16, 64)] The list: [1; 4; 9; 16; 25; 36; 49; 64; 81; 100] The list: [15; 30; 45; 60; 75; 90] The list: [1; 2; 3; 4; 2; 3; 4; 5; 3; 4; 5; 6]
Properties of List Data Type
The following table shows various properties of list data type β
Property | Type | Description |
---|---|---|
Head | ‘T | The first element. |
Empty | ‘T list | A static property that returns an empty list of the appropriate type. |
IsEmpty | bool | true if the list has no elements. |
Item | ‘T | The element at the specified index (zero-based). |
Length | int | The number of elements. |
Tail | ‘T list | The list without the first element. |
The following example shows the use of these properties β
Example
let list1 = [ 2; 4; 6; 8; 10; 12; 14; 16 ] // Use of Properties printfn "list1.IsEmpty is %b" (list1.IsEmpty) printfn "list1.Length is %d" (list1.Length) printfn "list1.Head is %d" (list1.Head) printfn "list1.Tail.Head is %d" (list1.Tail.Head) printfn "list1.Tail.Tail.Head is %d" (list1.Tail.Tail.Head) printfn "list1.Item(1) is %d" (list1.Item(1))
When you compile and execute the program, it yields the following output β
list1.IsEmpty is false list1.Length is 8 list1.Head is 2 list1.Tail.Head is 4 list1.Tail.Tail.Head is 6 list1.Item(1) is 4
Basic Operators on List
The following table shows the basic operations on list data type β
Value | Description |
---|---|
append: ‘T list β ‘T list β ‘T list | Returns a new list that contains the elements of the first list followed by elements of the second. |
average: ‘T list β ^T | Returns the average of the elements in the list. |
averageBy : (‘T β ^U) β ‘T list β ^U | Returns the average of the elements generated by applying the function to each element of the list. |
choose : (‘T β ‘U option) β ‘T list β ‘U list | Applies the given function to each element of the list. Returns the list comprised of the results for each element where the function returns Some. |
collect : (‘T β ‘U list) β ‘T list β ‘U list | For each element of the list, applies the given function. Concatenates all the results and returns the combined list. |
concat : seq<‘T list> β ‘T list | Returns a new list that contains the elements of each list in order. |
empty: ‘T list | Returns an empty list of the given type. |
exists : (‘T β bool) β ‘T list β bool | Tests if any element of the list satisfies the given predicate. |
exists2 : (‘T1 β ‘T2 β bool) β ‘T1 list β ‘T2 list β bool | Tests if any pair of corresponding elements of the lists satisfies the given predicate. |
filter : (‘T β bool) β ‘T list β ‘T list | Returns a new collection containing only the elements of the collection for which the given predicate returns true. |
find : (‘T β bool) β ‘T list β ‘T | Returns the first element for which the given function returns true. |
findIndex : (‘T β bool) β ‘T list β int | Returns the index of the first element in the list that satisfies the given predicate. |
fold : (‘State β ‘T β ‘State) β ‘State β ‘T list β ‘State | Applies a function to each element of the collection, threading an accumulator argument through the computation. This function takes the second argument and applies the function to it and the first element of the list. Then, it passes this result into the function along with the second element, and so on. Finally, it returns the final result. If the input function is f and the elements are i0…iN, then this function computes f (… (f s i0) i1 …) iN. |
fold2 : (‘State β ‘T1 β ‘T2 β ‘State) β ‘State β ‘T1 list β ‘T2 list β ‘State | Applies a function to corresponding elements of two collections, threading an accumulator argument through the computation. The collections must have identical sizes. If the input function is f and the elements are i0…iN and j0…jN, then this function computes f (… (f s i0 j0)…) iN jN. |
foldBack : (‘T β ‘State β ‘State) β ‘T list β ‘State β ‘State | Applies a function to each element of the collection, threading an accumulator argument through the computation. If the input function isf and the elements are i0…iN then computes f i0 (…(f iN s)). |
foldBack2 : (‘T1 β ‘T2 β ‘State β ‘State) β ‘T1 list β ‘T2 list β ‘State β ‘State | Applies a function to corresponding elements of two collections, threading an accumulator argument through the computation. The collections must have identical sizes. If the input function is f and the elements are i0…iN and j0…jN, then this function computes f i0 j0 (…(f iN jN s)). |
forall : (‘T β bool) β ‘T list β bool | Tests if all elements of the collection satisfy the given predicate. |
forall2 : (‘T1 β ‘T2 β bool) β ‘T1 list β ‘T2 list β bool | Tests if all corresponding elements of the collection satisfy the given predicate pairwise. |
head: ‘T list β ‘T | Returns the first element of the list. |
init: int β (int β ‘T) β ‘T list | Creates a list by calling the given generator on each index. |
isEmpty: ‘T list β bool | Returns true if the list contains no elements, false otherwise. |
iter : (‘T β unit) β ‘T list β unit | Applies the given function to each element of the collection. |
iter2 : (‘T1 β ‘T2 β unit) β ‘T1 list β ‘T2 list β unit | Applies the given function to two collections simultaneously. The collections must have identical sizes. |
iteri : (int β ‘T β unit) β ‘T list β unit | Applies the given function to each element of the collection. The integer passed to the function indicates the index of the element. |
iteri2 : (int β ‘T1 β ‘T2 β unit) β ‘T1 list β ‘T2 list β unit | Applies the given function to two collections simultaneously. The collections must have identical sizes. The integer passed to the function indicates the index of the element. |
length: ‘T list β int | Returns the length of the list. |
map : (‘T β ‘U) β ‘T list β ‘U list | Creates a new collection whose elements are the results of applying the given function to each of the elements of the collection. |
map2 : (‘T1 β ‘T2 β ‘U) β ‘T1 list β ‘T2 list β ‘U list | Creates a new collection whose elements are the results of applying the given function to the corresponding elements of the two collections pairwise. |
map3 : (‘T1 β ‘T2 β ‘T3 β ‘U) β ‘T1 list β ‘T2 list β ‘T3 list β ‘U list | Creates a new collection whose elements are the results of applying the given function to the corresponding elements of the three collections simultaneously. |
map : (int β ‘T β ‘U) β ‘T list β ‘U list | Creates a new collection whose elements are the results of applying the given function to each of the elements of the collection. The integer index passed to the function indicates the index (from 0) of the element being transformed. |
mapi2 : (int β ‘T1 β ‘T2 β ‘U) β ‘T1 list β ‘T2 list β ‘U list | Like List. map, but mapping corresponding elements from two lists of equal length. |
max: ‘T list β ‘T | Returns the greatest of all elements of the list, compared by using Operators. max. |
maxBy : (‘T β ‘U) β ‘T list β ‘T | Returns the greatest of all elements of the list, compared by using Operators. max on the function result. |
min: ‘T list β ‘T | Returns the lowest of all elements of the list, compared by using Operators. min. |
minBy : (‘T β ‘U) β ‘T list β ‘T | Returns the lowest of all elements of the list, compared by using Operators. min on the function result |
nth: ‘T list β int β ‘T | Indexes into the list. The first element has an index 0. |
ofArray : ‘T [] β ‘T list | Creates a list from the given array. |
of Seq : seq<‘T> β ‘T list | Creates a new list from the given enumerable object. |
partition : (‘T β bool) β ‘T list * ‘T list | Splits the collection into two collections, containing the elements for which the given predicate returns true and false respectively. |
permute : (int β int) β ‘T list β ‘T list | Returns a list with all elements permuted according to the specified permutation. |
pick : (‘T β ‘U option) β ‘T list β ‘U | Applies the given function to successive elements, returning the first result where the function returnsΒ SomeΒ for some value. |
reduce : (‘T β ‘T β ‘T) β ‘T list β ‘T | Applies a function to each element of the collection, threading an accumulator argument through the computation. This function applies the specified function to the first two elements of the list. It then passes this result into the function along with the third element, and so on. Finally, it returns the final result. If the input function is f and the elements are i0…iN, then this function computes f (… (f i0 i1) i2 …) iN. |
reduce back : (‘T β ‘T β ‘T) β ‘T list β ‘T | Applies a function to each element of the collection, threading an accumulator argument through the computation. If the input function is and the elements are i0…iN, then this function computes f i0 (…(f iN-1 iN)). |
replicate : (int β ‘T β ‘T list) | Creates a list by calling the given generator on each index. |
rev: ‘T list β ‘T list | Returns a new list with the elements in reverse order. |
scan : (‘State β ‘T β ‘State) β ‘State β ‘T list β ‘State list | Applies a function to each element of the collection, threading an accumulator argument through the computation. This function takes the second argument and applies the specified function to it and the first element of the list. Then, it passes this result into the function along with the second element and so on. Finally, it returns the list of intermediate results and the final result. |
Stanback : (‘T β ‘State β ‘State) β ‘T list β ‘State β ‘State list | Like foldBack, but returns both the intermediate and final results |
sort: ‘T list β ‘T list | Sorts the given list using Operators. compare. |
sortBy : (‘T β ‘Key) β ‘T list β ‘T list | Sorts the given list using keys given by the given projection. Keys are compared using Operators. compare. |
sortWith : (‘T β ‘T β int) β ‘T list β ‘T list | Sorts the given list using the given comparison function. |
sum: ^T list β ^T | Returns the sum of the elements in the list. |
sumBy : (‘T β ^U) β ‘T list β ^U | Returns the sum of the results generated by applying the function to each element of the list. |
tail: ‘T list β ‘T list | Returns the input list without the first element. |
toArray : ‘T list β ‘T [] | Creates an array from the given list. |
toSeq : ‘T list β seq<‘T> | Views the given list as a sequence. |
try Find : (‘T β bool) β ‘T list β ‘T option | Returns the first element for which the given function returns true. Return None if no such element exists. |
tryFindIndex : (‘T β bool) β ‘T list β int option | Returns the index of the first element in the list that satisfies the given predicate. Return None if no such element exists. |
tryPick : (‘T β ‘U option) β ‘T list β ‘U option | Applies the given function to successive elements, returning the first result where the function returnsΒ SomeΒ for some value. If no such element exists then returnΒ None. |
unzip : (‘T1 * ‘T2) list β ‘T1 list * ‘T2 list | Splits a list of pairs into two lists. |
unzip3 : (‘T1 * ‘T2 * ‘T3) list β ‘T1 list * ‘T2 list * ‘T3 list | Splits a list of triples into three lists. |
zip : ‘T1 list β ‘T2 list β (‘T1 * ‘T2) list | Combines the two lists into a list of pairs. The two lists must have equal lengths. |
zip3 : ‘T1 list β ‘T2 list β ‘T3 list β (‘T1 * ‘T2 * ‘T3) list | Combines the three lists into a list of triples. The lists must have equal lengths. |
The following examples demonstrate the uses of the above functionalities β
Example 1
This program shows reversing a list recursively β
let list1 = [ 2; 4; 6; 8; 10; 12; 14; 16 ] printfn "The original list: %A" list1 let reverse lt = let rec loop acc = function | [] -> acc | hd :: tl -> loop (hd :: acc) tl loop [] lt printfn "The reversed list: %A" (reverse list1)
When you compile and execute the program, it yields the following output β
The original list: [2; 4; 6; 8; 10; 12; 14; 16] The reversed list: [16; 14; 12; 10; 8; 6; 4; 2]
However, you can use theΒ revΒ function of the module for the same purpose β
let list1 = [ 2; 4; 6; 8; 10; 12; 14; 16 ] printfn "The original list: %A" list1 printfn "The reversed list: %A" (List.rev list1)
When you compile and execute the program, it yields the following output β
The original list: [2; 4; 6; 8; 10; 12; 14; 16] The reversed list: [16; 14; 12; 10; 8; 6; 4; 2]
Example 2
This program shows filtering a list using theΒ List. filterΒ method β
let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] printfn "The list: %A" list1 let list2 = list1 |> List.filter (fun x -> x % 2 = 0);; printfn "The Filtered list: %A" list2
When you compile and execute the program, it yields the following output β
The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] The Filtered list: [2; 4; 6; 8; 10]
Example 3
TheΒ List. mapΒ method maps a list from one type to another β
let list1 = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] printfn "The list: %A" list1 let list2 = list1 |> List.map (fun x -> (x * x).ToString());; printfn "The Mapped list: %A" list2
When you compile and execute the program, it yields the following output β
The list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] The Mapped list: ["1"; "4"; "9"; "16"; "25"; "36"; "49"; "64"; "81"; "100"]
Example 4
TheΒ List. appendΒ method and the @ operator appends one list to another β
let list1 = [1; 2; 3; 4; 5 ] let list2 = [6; 7; 8; 9; 10] let list3 = List.append list1 list2 printfn "The first list: %A" list1 printfn "The second list: %A" list2 printfn "The appened list: %A" list3 let lt1 = ['a'; 'b';'c' ] let lt2 = ['e'; 'f';'g' ] let lt3 = lt1 @ lt2 printfn "The first list: %A" lt1 printfn "The second list: %A" lt2 printfn "The appened list: %A" lt3
When you compile and execute the program, it yields the following output β
The first list: [1; 2; 3; 4; 5] The second list: [6; 7; 8; 9; 10] The appened list: [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] The first list: ['a'; 'b'; 'c'] The second list: ['e'; 'f'; 'g'] The appened list: ['a'; 'b'; 'c'; 'e'; 'f'; 'g']
Example 5
TheΒ List. sortΒ method sorts a list. TheΒ List. sumΒ method gives the sum of elements in the list and theΒ List. the averageΒ method gives the average of elements in the list β
let list1 = [9.0; 0.0; 2.0; -4.5; 11.2; 8.0; -10.0] printfn "The list: %A" list1 let list2 = List.sort list1 printfn "The sorted list: %A" list2 let s = List.sum list1 let avg = List.average list1 printfn "The sum: %f" s printfn "The average: %f" avg
When you compile and execute the program, it yields the following output β
The list: [9.0; 0.0; 2.0; -4.5; 11.2; 8.0; -10.0] The sorted list: [-10.0; -4.5; 0.0; 2.0; 8.0; 9.0; 11.2] The sum: 15.700000 The average: 2.242857
A “fold” operation applies a function to each element in a list, aggregates the result of the function in an accumulator variable, and returns the accumulator as the result of the fold operation.
Example 6
TheΒ List. foldΒ method applies a function to each element from left to right, whileΒ List.foldBackΒ applies a function to each element from right to left.
let sumList list = List.fold (fun acc elem -> acc + elem) 0 list printfn "Sum of the elements of list %A is %d." [ 1 .. 10 ] (sumList [ 1 .. 10 ])
When you compile and execute the program, it yields the following output β
Sum of the elements of list [1; 2; 3; 4; 5; 6; 7; 8; 9; 10] is 55.
Next Topic – Click Here
Pingback: F# - Records - Adglob Infosystem Pvt Ltd