Scikit-Learn : KNeighborsClassifier

Scikit-Learn : KNeighborsClassifier

In this guide, we will discuss KNeighborsClassifier in Scikit-Learn.

The K in the name of this classifier represents the k nearest neighbors, where k is an integer value specified by the user. Hence as the name suggests, this classifier implements learning based on the k nearest neighbors. The choice of the value of k is dependent on data. Let’s understand it more with the help if an implementation example βˆ’

Implementation Example

In this example, we will be implementing KNN on data set named Iris Flower data set by using scikit-learn KneighborsClassifer.

  • This data set has 50 samples for each different species (setosa, versicolor, virginica) of iris flower i.e. total of 150 samples.
  • For each sample, we have 4 features named sepal length, sepal width, petal length, petal width)

First, import the dataset and print the features names as follows βˆ’

from sklearn.datasets import load_iris
iris = load_iris()
print(iris.feature_names)

Output

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

Example

Now we can print target i.e the integers representing the different species. Here 0 = setos, 1 = versicolor and 2 = virginica.

print(iris.target)

Output

[
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
   0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
   2 2
]

Example

Following line of code will show the names of the target βˆ’

print(iris.target_names)

Output

['setosa' 'versicolor' 'virginica']

Example

We can check the number of observations and features with the help of following line of code (iris data set has 150 observations and 4 features)

print(iris.data.shape)

Output

(150, 4)

Now, we need to split the data into training and testing data. We will be using Sklearn train_test_split function to split the data into the ratio of 70 (training data) and 30 (testing data) βˆ’

X = iris.data[:, :4]
y = iris.target
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30)

Next, we will be doing data scaling with the help of Sklearn preprocessing module as follows βˆ’

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

Example

Following line of codes will give you the shape of train and test objects βˆ’

print(X_train.shape)
print(X_test.shape)

Output

(105, 4)
(45, 4)

Example

Following line of codes will give you the shape of new y object βˆ’

print(y_train.shape)
print(y_test.shape)

Output

(105,)
(45,)

Next, import the KneighborsClassifier class from Sklearn as follows βˆ’

from sklearn.neighbors import KNeighborsClassifier

To check accuracy, we need to import Metrics model as follows βˆ’

from sklearn import metrics
We are going to run it for k = 1 to 15 and will be recording testing accuracy, plotting it, showing confusion matrix and classification report:
Range_k = range(1,15)
scores = {}
scores_list = []
for k in range_k:
   classifier = KNeighborsClassifier(n_neighbors=k)
   classifier.fit(X_train, y_train)
   y_pred = classifier.predict(X_test)
   scores[k] = metrics.accuracy_score(y_test,y_pred)
   scores_list.append(metrics.accuracy_score(y_test,y_pred))
result = metrics.confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(result)
result1 = metrics.classification_report(y_test, y_pred)
print("Classification Report:",)
print (result1)

Example

Now, we will be plotting the relationship between the values of K and the corresponding testing accuracy. It will be done using matplotlib library.

%matplotlib inline
import matplotlib.pyplot as plt
plt.plot(k_range,scores_list)
plt.xlabel("Value of K")
plt.ylabel("Accuracy")

Output

Confusion Matrix:
[
   [15 0 0]
   [ 0 15 0]
   [ 0 1 14]
]
Classification Report:
            precision   recall   f1-score    support
         0     1.00     1.00        1.00        15
         1     0.94     1.00        0.97        15
         2     1.00     0.93        0.97        15

micro avg      0.98     0.98        0.98        45
macro avg      0.98     0.98        0.98        45
weighted avg   0.98     0.98        0.98        45

Text(0, 0.5, 'Accuracy')
kneighbors classifier

Example

For the above model, we can choose the optimal value of K (any value between 6 to 14, as the accuracy is highest for this range) as 8 and retrain the model as follows βˆ’

classifier = KNeighborsClassifier(n_neighbors = 8)
classifier.fit(X_train, y_train)

Output

KNeighborsClassifier(
   algorithm = 'auto', leaf_size = 30, metric = 'minkowski',
   metric_params = None, n_jobs = None, n_neighbors = 8, p = 2,
   weights = 'uniform'
)
classes = {0:'setosa',1:'versicolor',2:'virginicia'}
x_new = [[1,1,1,1],[4,3,1.3,0.2]]
y_predict = rnc.predict(x_new)
print(classes[y_predict[0]])
print(classes[y_predict[1]])

Output

virginicia
virginicia

Complete working/executable program

from sklearn.datasets import load_iris
iris = load_iris()
print(iris.target_names)
print(iris.data.shape)
X = iris.data[:, :4]
y = iris.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

print(X_train.shape)
print(X_test.shape)

from sklearn.neighbors import KNeighborsClassifier

from sklearn import metrics

Range_k = range(1,15)
scores = {}
scores_list = []
for k in range_k:
   classifier = KNeighborsClassifier(n_neighbors=k)
   classifier.fit(X_train, y_train)
   y_pred = classifier.predict(X_test)
   scores[k] = metrics.accuracy_score(y_test,y_pred)
   scores_list.append(metrics.accuracy_score(y_test,y_pred))
result = metrics.confusion_matrix(y_test, y_pred)
print("Confusion Matrix:")
print(result)
result1 = metrics.classification_report(y_test, y_pred)
print("Classification Report:",)
print (result1)
%matplotlib inline
import matplotlib.pyplot as plt
plt.plot(k_range,scores_list)
plt.xlabel("Value of K")
plt.ylabel("Accuracy")

classifier = KNeighborsClassifier(n_neighbors=8)
classifier.fit(X_train, y_train)

classes = {0:'setosa',1:'versicolor',2:'virginicia'}
x_new = [[1,1,1,1],[4,3,1.3,0.2]]
y_predict = rnc.predict(x_new)
print(classes[y_predict[0]])
print(classes[y_predict[1]])

Next Topic : Click Here

This Post Has One Comment

Leave a Reply