In this chapter, we will discuss Bokeh ColumnDataSource. Most of the plotting methods in API are able to receive data source parameters through the columnDatasource object. It makes sharing data between plots and ‘DataTables’.
NumFocus sponsored by Bokeh project https://numfocus.org/.
Example’s Bokeh ColumnDataSource
Below is the example
from bokeh.models import ColumnDataSource data = {'x':[1, 4, 3, 2, 5], 'y':[6, 5, 2, 4, 7]} cds = ColumnDataSource(data = data)
The following code generates a scatter plot using ColumnDataSource.
from bokeh.plotting import figure, output_file, show from bokeh.models import ColumnDataSource data = {'x':[1, 4, 3, 2, 5], 'y':[6, 5, 2, 4, 7]} cds = ColumnDataSource(data = data) fig = figure() fig.scatter(x = 'x', y = 'y',source = cds, marker = "circle", size = 20, fill_color = "grey") show(fig)
Output
Instead of assigning a Python dictionary to ColumnDataSource, we can use a Pandas DataFrame for it.
Let us use ‘test.csv’ (used earlier in this section) to obtain a DataFrame and use it for getting ColumnDataSource and rendering line plot.
from bokeh.plotting import figure, output_file, show import pandas as pd from bokeh.models import ColumnDataSource df = pd.read_csv('test.csv') cds = ColumnDataSource(df) fig = figure(y_axis_type = 'log') fig.line(x = 'x', y = 'pow',source = cds, line_color = "grey") show(fig)
Output
Next Topic – Click Here
Pingback: Bokeh - Pandas - Adglob Infosystem Pvt Ltd