NumPy – with I/O. The ndarray objects can be saved to and loaded from the disk files. The IO functions available are −
- load() and save() functions handle /numPy binary files (with npy extension)
- loadtxt() and savetxt() functions handle normal text files
NumPy introduces a simple file format for ndarray objects.
NumPy – with I/O(numpy.save)
The numpy.save() file stores the input array in a disk file with npy extension.
import numpy as np a = np.array([1,2,3,4,5]) np.save('outfile',a)
To reconstruct array from outfile.npy, use load() function.
import numpy as np b = np.load('outfile.npy') print b
It will produce the following output −
array([1, 2, 3, 4, 5])
The save() and load() functions accept an additional Boolean parameter allow_pickles. A pickle in Python is used to serialize and de-serialize objects before saving to or reading from a disk file.
savetxt()
The storage and retrieval of array data in simple functions accept an additional Boolean parameter allow_pickles
Example
import numpy as np a = np.array([1,2,3,4,5]) np.savetxt('out.txt',a) b = np.loadtxt('out.txt') print b
It will produce the following output −
[ 1. 2. 3. 4. 5.]
The savetxt() and loadtxt() functions accept additional optional parameters such as header, footer, and delimiter.
Next Topic – Click Here
Pingback: NumPy - Histogram Using Matplotlib - Adglob Infosystem Pvt Ltd
As a variant, yes
Pingback: Keras - Overview of Deep learning - Adglob Infosystem Pvt Ltd
Pingback: Keras - Deep learning - Adglob Infosystem Pvt Ltd
Pingback: Keras - Modules - Adglob Infosystem Pvt Ltd
Pingback: Keras - Customized Layer - Adglob Infosystem Pvt Ltd
Pingback: Keras - Models - Adglob Infosystem Pvt Ltd
Pingback: Keras - Model Compilation - Adglob Infosystem Pvt Ltd