Python Pandas – Working with Text Data

In this section, we will discuss the string operations with our basic Series/Index. In the subsequent we will learn how to apply these string functions on the DataFrame.

Pandas provides a set of string functions which make it easy to operate on string data. Most importantly, these functions ignore (or exclude) missing/NaN values.

Almost, all of these methods work with Python string functions (refer: https://docs.python.org/3/library/stdtypes.html#string-methods). So, convert the Series Object to String Object and then perform the operation.

Let us now see how each operation performs.

Sr.NoFunction & Description
1lower()Converts strings in the Series/Index to lower case.
2upper()Converts strings in the Series/Index to upper case.
3len()Computes String length().
4strip()Helps strip whitespace(including newline) from each string in the Series/index from both the sides.
5split(‘ ‘)Splits each string with the given pattern.
6cat(sep=’ ‘)Concatenates the series/index elements with given separator.
7get_dummies()Returns the DataFrame with One-Hot Encoded values.
8contains(pattern)Returns a Boolean value True for each element if the substring contains in the element, else False.
9replace(a,b)Replaces the value a with the value b.
10repeat(value)Repeats each element with specified number of times.
11count(pattern)Returns count of appearance of pattern in each element.
12startswith(pattern)Returns true if the element in the Series/Index starts with the pattern.
13endswith(pattern)Returns true if the element in the Series/Index ends with the pattern.
14find(pattern)Returns the first position of the first occurrence of the pattern.
15findall(pattern)Returns a list of all occurrence of the pattern.
16swapcaseSwaps the case lower/upper.
17islower()Checks whether all characters in each string in the Series/Index in lower case or not. Returns Boolean
18isupper()Checks whether all characters in each string in the Series/Index in upper case or not. Returns Boolean.
19isnumeric()Checks whether all characters in each string in the Series/Index are numeric. Returns Boolean.

Let us now create a Series and see how all the above functions work.

import pandas as pd
import numpy as np

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith'])

print s

Its output is as follows −

0            Tom
1   William Rick
2           John
3        Alber@t
4            NaN
5           1234
6    Steve Smith
dtype: object

lower()

import pandas as pd
import numpy as np

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith'])

print s.str.lower()

Its output is as follows −

0            tom
1   william rick
2           john
3        alber@t
4            NaN
5           1234
6    steve smith
dtype: object

upper()

import pandas as pd
import numpy as np

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith'])

print s.str.upper()

Its output is as follows −

0            TOM
1   WILLIAM RICK
2           JOHN
3        ALBER@T
4            NaN
5           1234
6    STEVE SMITH
dtype: object

len()

import pandas as pd
import numpy as np

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t', np.nan, '1234','SteveSmith'])
print s.str.len()

Its output is as follows −

0    3.0
1   12.0
2    4.0
3    7.0
4    NaN
5    4.0
6   10.0
dtype: float64

strip()

import pandas as pd
import numpy as np
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print s
print ("After Stripping:")
print s.str.strip()

Its output is as follows −

0            Tom
1   William Rick
2           John
3        Alber@t
dtype: object

After Stripping:
0            Tom
1   William Rick
2           John
3        Alber@t
dtype: object

split(pattern)

import pandas as pd
import numpy as np
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print s
print ("Split Pattern:")
print s.str.split(' ')

Its output is as follows −

0            Tom
1   William Rick
2           John
3        Alber@t
dtype: object

Split Pattern:
0   [Tom, , , , , , , , , , ]
1   [, , , , , William, Rick]
2   [John]
3   [Alber@t]
dtype: object

cat(sep=pattern)

import pandas as pd
import numpy as np

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print s.str.cat(sep='_')

Its output is as follows −

Tom _ William Rick_John_Alber@t

get_dummies()

import pandas as pd
import numpy as np

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print s.str.get_dummies()

Its output is as follows −

   William Rick   Alber@t   John   Tom
0             0         0      0     1
1             1         0      0     0
2             0         0      1     0
3             0         1      0     0

contains ()

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print s.str.contains(' ')

Its output is as follows −

0   True
1   True
2   False
3   False
dtype: bool

replace(a,b)

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print s
print ("After replacing @ with $:")
print s.str.replace('@','$')

Its output is as follows −

0   Tom
1   William Rick
2   John
3   Alber@t
dtype: object

After replacing @ with $:
0   Tom
1   William Rick
2   John
3   Alber$t
dtype: object

repeat(value)

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print s.str.repeat(2)

Its output is as follows −

0   Tom            Tom
1   William Rick   William Rick
2                  JohnJohn
3                  Alber@tAlber@t
dtype: object

count(pattern)

import pandas as pd
 
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print ("The number of 'm's in each string:")
print s.str.count('m')

Its output is as follows −

The number of 'm's in each string:
0    1
1    1
2    0
3    0

startswith(pattern)

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print ("Strings that start with 'T':")
print s.str. startswith ('T')

Its output is as follows −

0  True
1  False
2  False
3  False
dtype: bool

endswith(pattern)

import pandas as pd
s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])
print ("Strings that end with 't':")
print s.str.endswith('t')

Its output is as follows −

Strings that end with 't':
0  False
1  False
2  False
3  True
dtype: bool

find(pattern)

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print s.str.find('e')

Its output is as follows −

0  -1
1  -1
2  -1
3   3
dtype: int64

“-1” indicates that there no such pattern available in the element.

findall(pattern)

import pandas as pd

s = pd.Series(['Tom ', ' William Rick', 'John', 'Alber@t'])

print s.str.findall('e')

Its output is as follows −

0 []
1 []
2 []
3 [e]
dtype: object

Null list([ ]) indicates that there is no such pattern available in the element.

swapcase()

import pandas as pd

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t'])
print s.str.swapcase()

Its output is as follows −

0  tOM
1  wILLIAM rICK
2  jOHN
3  aLBER@T
dtype: object

islower()

import pandas as pd

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t'])
print s.str.islower()

Its output is as follows −

0  False
1  False
2  False
3  False
dtype: bool

isupper()

import pandas as pd

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t'])

print s.str.isupper()

Its output is as follows −

0  False
1  False
2  False
3  False
dtype: bool

isnumeric()

import pandas as pd

s = pd.Series(['Tom', 'William Rick', 'John', 'Alber@t'])

print s.str.isnumeric()

Its output is as follows −

0  False
1  False
2  False
3  False
dtype: bool

Leave a Reply